Search results for " Dip Pen Nanolithography"

showing 6 items of 6 documents

DNA Nanostructures in Cell Biology and Medicine

2017

Drug delivery endocytosis DNA aptamers Dip Pen NanolithographyDna nanostructuresDip-pen nanolithographyDrug deliveryNanotechnologyBiologyDNA AptamersEndocytosisCell biology
researchProduct

A Protein-Interaction Array Inside a Living Cell

2013

Cell phenotype is determined by protein network states that are maintained by the dynamics of multiple protein interactions.1 Fluorescence microscopy approaches that measure protein interactions in individual cells, such as by Forster resonant energy transfer (FRET), are limited by the spectral separation of fluorophores and thus are most suitable to analyze a single protein interaction in a given cell. However, analysis of correlations between multiple protein interactions is required to uncover the interdependence of protein reactions in dynamic signal networks. Available protein-array technologies enable the parallel analysis of interacting proteins from cell extracts, however, they can …

ImmunoprecipitationRecombinant Fusion Proteinsprotein-protein interactionsImmobilized Nucleic AcidsProtein Array AnalysisreceptorsDNA Single-StrandedCatalysisProtein–protein interactionReceptors G-Protein-CoupledBimolecular fluorescence complementationProtein Array AnalysisChlorocebus aethiopsFluorescence microscopeFluorescence Resonance Energy TransferAnimalsProtein Interaction MapsProtein kinase Amultiplexed assayChemistryProteinsProtein-protein interactions Dip Pen Nanolithography Protein KinaseDNA directed immobilizationGeneral MedicineGeneral ChemistryCommunicationssurface-immobilizationKineticsLuminescent ProteinsFörster resonance energy transferBiochemistryMicroscopy FluorescenceCOS CellsBiophysicsSignal transductionAntibodies Immobilizedsignal transduction
researchProduct

Multiplexed Sub-Cellular Scale Microarrays from direct DNA Nanolithography

2014

The multiplexed, high-throughput fabrication of microarrays is of vital importance for many applications in life sciences, including drug screening, medical diagnostics and cell biology. In single cell investigations, features smaller than 10 μm are needed for functional manipulation of sub-cellular structures. Several top-down methodologies like electron beam lithography and microcontact printing can be employed for indirect surface patterning at this scale, however those approaches often require clean rooms and multiplexing of several different biomolecules on the same surface is limited [1]. To overcome these obstacles, we combined Dip-pen nanolithography (DPN) and DNA-directed immobiliz…

DNA directed immobilization Dip Pen Nanolithography Polymer Pen Lithography Single-cell biology
researchProduct

Methods, kits and means for determining intracellular interactions

2015

Methods, kits and systems for determining whether a reaction occurs between a chimeric transmembrane receptor and an intracellular interaction partner thereof within a cell.

Intracellular microarrays Protein kinases Dip Pen NanolithographySettore CHIM/02 - Chimica Fisica
researchProduct

Printing Biology for Advanced Synthetic Biosystem

2019

Printing technologies represent a powerful tool for the direct micro- and nano- fabrication of biomolecular structures at the interface between life and materials sciences (Arrabito et al., 2012). Their continuous development over the last years has permitted the onset of man-made biosystems with customizable dimensions (from the micron-scale down to the nanometer scale), composition (organic molecules, DNA, proteins, phospholipids), and relevant functions (molecular interactions, drug screening, cellular biointerfaces, cell-like compartments). In this work, we show the possibility to leverage the fabrication of a wide class of solid-supported or liquid-liquid based synthetic compartments b…

Inkjet Printing Dip Pen Nanolithography Molecular Confinement Synthetic Biology
researchProduct

Micro and Nano patterns for Biosensing: from enzymatic assays to single cells interaction arrays

2012

In this thesis work, solution dispensing techniques have been employed for the realization of complex biological arrays. Inkjet printing techniques were employed for the generation of drug screening platforms. This approach was initially proved with a model enzyme system like Glucose Oxidase substrate covalently linked to a functionalized silicon oxide support. On this support an enzymatic substrate (D-glucose)/inhibitor (D-glucal) couple was accurately dispensed. A simple optical detection method was used to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Afterwards, this methodology has been extended to CYP…

Inkjet printing Dip-Pen Nanolithography Drug Screening Biosensors Metabolic Enzymes DNA Microstructures Cellular Arrays.Area 03 - Scienze chimicheMicroarrays Dip Pen Nanolithography Ink-jet printing
researchProduct