Search results for " Dip Pen Nanolithography"
showing 6 items of 6 documents
DNA Nanostructures in Cell Biology and Medicine
2017
A Protein-Interaction Array Inside a Living Cell
2013
Cell phenotype is determined by protein network states that are maintained by the dynamics of multiple protein interactions.1 Fluorescence microscopy approaches that measure protein interactions in individual cells, such as by Forster resonant energy transfer (FRET), are limited by the spectral separation of fluorophores and thus are most suitable to analyze a single protein interaction in a given cell. However, analysis of correlations between multiple protein interactions is required to uncover the interdependence of protein reactions in dynamic signal networks. Available protein-array technologies enable the parallel analysis of interacting proteins from cell extracts, however, they can …
Multiplexed Sub-Cellular Scale Microarrays from direct DNA Nanolithography
2014
The multiplexed, high-throughput fabrication of microarrays is of vital importance for many applications in life sciences, including drug screening, medical diagnostics and cell biology. In single cell investigations, features smaller than 10 μm are needed for functional manipulation of sub-cellular structures. Several top-down methodologies like electron beam lithography and microcontact printing can be employed for indirect surface patterning at this scale, however those approaches often require clean rooms and multiplexing of several different biomolecules on the same surface is limited [1]. To overcome these obstacles, we combined Dip-pen nanolithography (DPN) and DNA-directed immobiliz…
Methods, kits and means for determining intracellular interactions
2015
Methods, kits and systems for determining whether a reaction occurs between a chimeric transmembrane receptor and an intracellular interaction partner thereof within a cell.
Printing Biology for Advanced Synthetic Biosystem
2019
Printing technologies represent a powerful tool for the direct micro- and nano- fabrication of biomolecular structures at the interface between life and materials sciences (Arrabito et al., 2012). Their continuous development over the last years has permitted the onset of man-made biosystems with customizable dimensions (from the micron-scale down to the nanometer scale), composition (organic molecules, DNA, proteins, phospholipids), and relevant functions (molecular interactions, drug screening, cellular biointerfaces, cell-like compartments). In this work, we show the possibility to leverage the fabrication of a wide class of solid-supported or liquid-liquid based synthetic compartments b…
Micro and Nano patterns for Biosensing: from enzymatic assays to single cells interaction arrays
2012
In this thesis work, solution dispensing techniques have been employed for the realization of complex biological arrays. Inkjet printing techniques were employed for the generation of drug screening platforms. This approach was initially proved with a model enzyme system like Glucose Oxidase substrate covalently linked to a functionalized silicon oxide support. On this support an enzymatic substrate (D-glucose)/inhibitor (D-glucal) couple was accurately dispensed. A simple optical detection method was used to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Afterwards, this methodology has been extended to CYP…